Charge-Transfer Complexes of Aryl Derivatives of Group 14 and Group 15 Elements with Tetracyanoethylene

John E. Frey,* Roger D. Cole, Elizabeth C. Kitchen, Lori M. Suprenant, and Mary Sue Sylwestrzak

Contribution from the Department of Chemistry, Northern Michigan University, Marquette, Michigan 49855. Received March 29, 1984

Abstract: Spectral characteristics and association constants for dichloromethane solutions of 11 1:1 complexes of phenyl derivatives of C, Si, Ge, Sn, and Pb with TCNE are reported. Trends in values of $\Delta \nu_{1/2}$, λ_{max} , and K_{eq} for TCNE complexes of PhCH₃, Ph₂CH₂, Ph₃CH, and Ph₄C are interpreted in terms of hyperconjugative, inductive, and steric effects. Striking similarities in the spectra of TCNE complexes of Ph₄C, Ph₄Si, Ph₄Ge, Ph₄Sn, and Ph₄Pb indicate that there is no appreciable $p\pi \rightarrow d\pi$ bonding between the phenyl groups and central atoms and that the energies of the phenyl π orbitals are unaffected by the size or electronegativities of the central atoms. Spectral characteristics and association constants for dichloromethane solutions of 10 1:1 complexes of arylamines with TCNE in dichloromethane are reported. These complexes generally exhibit two absorbance bands. The low wavelength maxima, λ_1 (385–415 nm), arise from phenyl a₂ orbitals. The high wavelength maxima, λ_2 (580–820 nm), arise from b₁ orbitals, which are strongly conjugated with the unbonded electron pair of the central atom. Di- and triarylamines form stable complexes with TCNE, whereas monoarylamines react irreversibly with TCNE. Ph₃P reacts rapidly with TCNE in dichloromethane to yield a 1:2 adduct. TCNE also reacts rapidly with 2-, 3-, and 4-Tol₃P but forms a 1:1 complex with Ms₃P which has λ_{max} 416 nm. Ph₃As, Ph₃Sb, and Ph₃Bi form 1:1 complexes with TCNE which have two overlapping absorbance bands. The low wavelength bands, λ_1 (385–405 nm), arise from a₂ orbitals, whereas the high wavelength bands, λ_2 (515–545 nm), arise from n orbitals energized by $p\pi \rightarrow d\pi$ conjugation.

We recently reported that triphenylborane and tetracyanoethylene (TCNE) form a yellow $\pi - \pi$ complex in dichloromethane.¹ The color is due to a single absorbance band with a maximum at 385 nm (Figure 1) arising from a charge-transfer (CT) transition from the a_2 and b_1 orbitals of the phenyl ring (Figure 2) to the lowest electron-acceptor orbital (LEAO) in TCNE (Figure 3). The nature of the absorbance band and other supporting evidence led us to conclude that there was no appreciable interaction between the π electrons of the phenyl ring with the vacant 2p orbital of the boron atom. This finding prompted us to investigate the possible interactions of phenyl π electrons with vacant d orbitals and filled p orbitals of atoms of the elements of groups 14 and 15.

Initially we characterized TCNE complexes of phenyl derivatives of carbon and nitrogen in order to establish reference points for studies with congeners of other elements. Spectra of dichloromethane solutions of TCNE with triphenylmethane and triphenylamine in Figure 1 show evidence of electronic interaction between the phenyl groups and substituent atoms. The 815-nm band of Ph₃N-TCNE suggests particularly strong $n \rightarrow \pi$ interaction of the nonbonded electron pair of nitrogen with the π electrons of the attached phenyl rings.

Previous attempts to study the nature of this interaction through characterization of arylamine-TCNE complexes have been hampered by the tendency of arylamines to undergo irreversible nitrogen- and ring-substituted tricyanovinylation reactions with TCNE.² Nevertheless Rappoport³ and Isaacs⁴ successfully characterized complexes of TCNE with aniline and several of its derivatives.

In a typical example, Isaacs reported absorbance maxima at 400 and 643 nm in the spectrum of a dichloromethane solution of *N*-methylaniline and TCNE taken within 1 min after mixing. Combining evidence taken from optical and ESR studies of this system in dichloromethane and acetone, he concluded that the 400-nm band was due to the radical anion TCNE⁻ and that the 643-nm band arose from the π - π complex PhNHMe-TCNE. While this interpretation has been confirmed specifically for PhNHMe-TCNE,⁵ we believe that the double bands observed

in many other arylamine-TCNE complexes can be explained by using a model proposed by Orgel⁶ and applied to TCNE complexes by Mobley, Rieckhoff, and Voigt.^{7,8}

According to this model, the CT transitions in the complex PhR-TCNE (R = CH₃, OCH₃, etc.) occur between the a_2 or b_1 donor orbitals and the LEAO of TCNE, depending on the orientation of the molecules. The $a_2 \rightarrow$ TCNE transition, which occurs in configuration I of 1, usually gives rise to an absorbance

band at 385 nm.⁹ The $b_1 \rightarrow TCNE$ transition occurs in configuration II, giving rise to a band at λ_{max} greater than 385 nm when R is an electron-donating substituent. Support for this interpretation is forthcoming from our studies on TCNE complexes of aryl derivatives of nitrogen.

Bock and Alt¹⁰ reported that the complexes PhCH₃-TCNE and PhSiH₃-TCNE had absorbance maxima at 406 and 385 nm, respectively. They cited these values, together with other supporting data, as evidence for $p\pi \rightarrow d\pi$ interaction in which electrons are donated from the b₂ orbital of the phenyl group to a vacant d orbital of the silicon atom. We have examined spectra of TCNE complexes of tetraphenyl derivatives of germanium, tin, and lead for evidence of similar interactions.

Finally we have studied the spectra of a number of phenylmethanes and arylamines for evidence of electronic and steric interactions between phenyl groups attached to a common atom.

Experimental Section

Reagents. Solvents and reagent chemicals used were the purest grades available from the following chemical suppliers: Aldrich, Alfa, Fisher,

- (5) Farrell, P. G.; Ngo, P. N. J. Chem. Soc., Perkin Trans. 2 1974, 552-556.
- (6) Orgel, L. E. J. Chem. Phys. 1955, 23, 1352-1353.
 (7) Mobley, M. J.; Rieckhoff, K. E.; Voigt, E.-M. J. Phys. Chem. 1978,
- 82, 2005-2012. (8) Voigt, E. M. J. Am. Chem. Soc. 1964, 86, 3611-3617.
- (9) Merifield, R. E.; Phillips, W. D. J. Am. Chem. Soc. 1958, 80, 2778-2782.
 - (10) Bock, H.; Alt, H. J. Am. Chem. Soc. 1970, 92, 1569-1576.

⁽¹⁾ Frey, J. E.; Kitchen, E. C. J. Am. Chem. Soc. 1983, 105, 2175-2178.

⁽²⁾ McKusick, B. C.; Heckert, R. E.; Cairns, T. L.; Coffman, D. D.; Mower, H. F. J. Am. Chem. Soc. 1958, 80, 2806-2815.

⁽³⁾ Rappoport, Z. J. Chem. Soc. 1963, 4498-4500.

⁽⁴⁾ Isaacs, N. S. J. Chem. Soc. B 1966, 1053-1058

Figure 1. Absorbance curves of TCNE complexes.

Figure 2. Highest occupied donor orbitals of the phenyl group.

Figure 3. Lowest electron-acceptor orbital of TCNE.

Fluka, Kodak, and Petrarch Systems. All chemicals of less than "reagent grade" purity were subjected to repeated distillation, recrystallization, or vacuum sublimation until their optical spectra and melting points agreed closely with data found in the literature. TCNE from Kodak was recrystallized twice from chlorobenzene and sublimed 2 or 3 times in vacuum p199-200 °C (lit.¹¹ mp 198-200 °C). Dichloromethane, Fisher Spectranalyzed, was used without further purification. Tri-4-tolylamine obtained from R. I. Walter melted sharply at 115 °C (lit.¹² mp 110-117 °C).

Stock solutions of all reagents in dichloromethane were prepared by transferring solids or liquids directly into tared volumetric flasks and filling to the mark with solvent. Mixtures were prepared by transferring measured amounts of stock solutions into 10-mL glass-stoppered volumetric flasks by using calibrated BDL Pipetters (precision ± 0.001 mL).

Spectra were recorded on a Beckman ACTA-CIII spectrophotometer with matched 10-mm Fisher Suprasil and 5-cm Beckman Corex quartz cells. Concentrations of stock solutions were adjusted to yield absorbance values in the range 0.2-0.8 whenever possible. Absorbance data were refined by Liptay's procedure¹³ and fit to the Scott equation¹⁴ (eq 1). C_X

$$C_{\mathbf{X}}C_{\mathbf{Y}}/A = (1/K\epsilon) + (1/\epsilon)C_{\mathbf{X}}$$
(1)

and $C_{\rm Y}$ are the molarities of reactants X and Y, $C_{\rm X} > C_{\rm Y}$, A is the

Table I. Characteristics of Charge-Transfer Complexes of TCNE with Group 14 Aryls in Dichloromethane at 21 $^{\circ}C$

donor	λ _{max} , nm	€ _{max}	K, L/mol	$10^{-3} \Delta \nu_{1/2}, \ \mathrm{cm}^{-1}$
PhH ^{a,b}	385	735 ± 53	0.67 ± 0.05	5.7
PhCH ₃ ^c	410	1410 ± 130	0.56 ± 0.05	6.5
PhCH ₂ Me	415	1520 ± 160	0.41 ± 0.04	6.5
PhCHMe ₂	415	1950 ± 520	0.17 ± 0.05	6.7
PhCMe ₃	415	630 ± 56	0.46 ± 0.04	6.4
Ph ₂ CH ₂	405	1130 ± 140	0.63 ± 0.08	7.3
Ph_2CMe_2	415	4360 ± 510	0.07 ± 0.01	8.0
Ph ₃ CH	400	316 ± 18	1.34 ± 0.08	8.0
Ph ₄ C	395	254 ± 30	0.85 ± 0.10	~8.5
Ph₄Si	395	171 ± 17	2.31 ± 0.23	
Ph₄Ge	395	329 ± 24	1.14 ± 0.08	
Ph₄Sn	395	237 ± 28	2.36 ± 0.28	
Ph₄Pb	395	274 ± 27	2.53 ± 0.25	

^a Reference 9: λ , 384; ϵ , 3570; K, 0.13; $\Delta \nu_{1/2}$, 5800. ^b Reference 15: λ , 390; ϵ , 3000; K, 0.14. ^c Reference 9: λ , 406; ϵ , 3330; K, 0.24; $\Delta \nu_{1/2}$, 6800.

absorbance of the complex XY, and K is the association constant for the complex-formation reaction (eq 2). Values of ϵ (molar absorptivity) and

$$X + Y \rightleftharpoons XY \tag{2}$$

K are calculated from the slope and intercept of eq 1; their uncertainties are expressed at the 50% confidence interval. Continuous variation plots of all the complexes characterized in this study have maxima at 50 mol %, confirming the existence of 1:1 complexes in each instance.

Association constant values K_1 and K_2 recorded in Table II are calculated from absorbance values near the short and long wavelength bands λ_1 and λ_2 . Theoretically, K_1 and K_2 should be identical; in practice they are usually in good agreement, but in several cases they differ by a factor of 2 or 3.

Group 14 Aryls and TCNE. Dichloromethane solutions of the aryl derivatives listed in Table I have sharp absorbance cutoffs at 300-350 nm. When mixed with TCNE, these solutions turn yellow, the color in each instance being due to a nearly symmetrical absorbance band with λ_{max} in the range 385-415 nm^{9,15} TCNE was used in excess in all systems involving tetraphenyl derivatives because of the limited solubility (<0.02 M) of these compounds in dichloromethane. In all other systems, the aryl derivative was used in excess.

Arylamines and TCNE. Dichloromethane solutions of arylamines listed in Table II have sharp absorbance cutoffs between 315-350 nm, except for tri-4-tolylamine which absorbs strongly just below 400 nm. When mixed with TCNE, these solutions turn blue or green in color. Solutions of TCNE with di- and triarylamines and with the carbazoles maintained color stability for periods of several days in contrast to TCNE-anilines which changed color within hours due to irreversible reactions between the components. Spectra of unstable systems were taken within 2 min after mixing.

Group 15 Triphenyls and TCNE. Dichloromethane solutions of Ph_3As , Ph_3Sb , and Ph_3Bi have absorbance cutoffs from 315 to 350 nm. When mixed with TCNE, a red or orange color appears instantly. The color remains stable for a period of several days.

Solutions of Ph_3P in either chloroform or dichloromethane have a sharp absorbance cutoff at 330 nm. When Ph_3P and TCNE are mixed in chloroform, a bright red-orange color develops over a period of several seconds. Spectra of these solutions exhibit bands with maxima at 360 and 485 nm. The continuous variations curve for this system rises to a maximum at about 60 mol % TCNE and then abruptly drops to 0. When Ph_3P and TCNE are mixed in dichloromethane, an intense green color forms instantly and then disappears within 1 s; a red-orange color develops thereafter. The continuous variations curves for the Ph_3P -TCNE system in both chloroform and dichloromethane are highly irregular. They indicate that the reagents react rapidly and irreversibly and that the complex Ph_3P -TCNE, if it forms at all, has a transitory existence.

A dichloromethane solution of Ph_3PO has a sharp absorbance cutoff at 300 nm. When mixed with TCNE, it turns yellow immediately. The spectrum of the mixture has two shoulders at 390 and 415 nm which are not suitable for analysis.

An intense blue color forms instantly when dichloromethane solutions of Ph_3AsO and TCNE are mixed. The blue fades rapidly to a yellow-gray color indicative of an irreversible reaction between the components.

⁽¹¹⁾ Cairns, T. L.; Carboni, R. A.; Coffman, D. D.; Engelhart, V. A.; Heckert, R. E.; Little, E. L.; McGeer, E. G.; McKusick, B. C.; Middleton, W. J.; Scribner, R. M.; Theobald, C. W.; Winberg, H. E. J. Am. Chem. Soc. **1958**, 80, 2775-2778.

⁽¹²⁾ Walter, R. I. J. Am. Chem. Soc. 1955, 77, 5999-6002.

⁽¹³⁾ Liptay, W. Z. Elektrochem. 1961, 65, 375-383.

⁽¹⁴⁾ Scott, R. L. Recl. Trav. Chim. Pays-Bas 1956, 75, 787-789.

⁽¹⁵⁾ Bhowmik, B. B.; Srimani, P. K. Spectrochim. Acta, Part A 1973, 29A, 935-942.

Table II. Characteristics of Charge-Transfer Complexes of TCNE with Group 15 Aryls in Dichloromethane at 21 °C

compound	λ_1 , nm	ε ₁	K_1 , L/mol	λ_2 , nm	¢2	K_2 , L/mol	A_2/A_1^f	
PhNH ₂ ^a	385			590	1790 ± 80	3.23 ± 0.15		
PhNHMe ^b	385			640	3320 ± 30	4.84 ± 0.04		
PhNMe ₂ ^c	400	1050 ± 150	5.78 ± 0.81	675	2310 ± 180	9.18 ± 0.74	3.27	
4-CH ₃ C ₆ H₄NH ₂ ^d				640	1630 ± 170	9.24 ± 1.01		
4-CH ₃ C ₆ H ₄ NMe ₂	405	1540 ± 230	12.8 ± 1.9	705	3260 ± 260	21.6 ± 1.7	3.23	
4-CNC ₆ H ₄ NMe ₂	385 sh			630	329 ± 18	2.10 ± 0.12	4.57	
Ph ₂ NH ²	385	1810 ± 120	0.97 ± 0.06	755	2540 ± 230	0.96 ± 0.09	1.40	
Ph ₂ NMe	400	916 ± 47	1.83 ± 0.09	800	1570 ± 80	2.08 ± 0.11	1.94	
Ph ₃ N	390	283 ± 32	1.54 ± 0.17	815	660 ± 87	0.64 ± 0.09	1.02	
$(4-CH_3C_6H_4)_3N$	425 sh			820	973 ± 53	0.73 ± 0.04		
$(C_6H_4)_2NH^{e}$	385 sh			600	3860 ± 230	1.46 ± 0.09		
$(C_6H_4)_2$ NPh	390	627 ± 55	1.96 ± 0.17	580	1270 ± 30	2.29 ± 0.06	2.33	
				725	495 ± 25	3.46 ± 0.19	1.30	
Ph ₃ As	385	137 ± 14	3.39 ± 0.38	515	93 ± 11	2.94 ± 0.36	0.60	
Ph ₃ Sb	395	457 ± 38	1.19 ± 0.10	525	131 ± 14	2.32 ± 0.25	0.45	
Ph ₃ Bi	405	610 ± 57	1.28 ± 0.12	545	207 ± 27	1.28 ± 0.17	0.34	
Ms ₂ P	416	131 ± 10	6.87 ± 0.56					

^a Reference 4: λ_2 , 610; ϵ_2 , 1510; K_2 , 5.4. ^b Reference 4: λ_2 , 643; ϵ_2 , 2950; K_2 , 6.9; chloroform. ^c Reference 3: λ_2 , 675; ϵ_2 , 3400; K_2 , 15.0; 32.5 °C; chloroform. ^d Reference 4: λ_2 , 654; ϵ_2 , 2400; K_2 , 7.5. ^c Reference 32: λ_2 , 605; ϵ_2 , 2900; K_2 , 5.12; chloroform. ^f Ratio of absorbances at λ_2 and λ_1 .

Figure 4. Absorbance curves of TCNE complexes.

When tri-2-tolylphosphine and TCNE are mixed in dichloromethane, the solution turns green initially and fades rapidly to a yellow color. A freshly mixed solution has an absorbance band at 410 nm which rapidly subsides to a shoulder. Both tri-3- and tri-4-tolylphosphine also react irreversibly with TCNE.

Trimesitylphosphine (Ms₃P) forms pale yellow solutions with TCNE in dichloromethane which fade over a period of several hours. Spectra of solutions taken within 2 min after mixing indicate the presence of a 1:1 complex. The absorbance curves for these solutions exhibit a series of spikes situated at λ 382, 390, 398, 407, 416 (max), 425, 434, 445, 454, 457 nm. The average spacing of 530 cm⁻¹ appears to be an expression of a vibrational mode in Ms₃P. The spectral bands of charge-transfer complexes are usually smooth, rounded curves.

Results and Discussion

TCNE Complexes of Benzene and Phenylmethanes. The spectral band of PhH-TCNE (Figure 4) has the narrowest half-width (5700 cm⁻¹) and lowest λ_{max} (385 nm) of any of the complexes considered in this study. Since the e_{1g} orbitals of benzene are degenerate, CT transitions in PhH-TCNE have the same energy and produce the same spectral band regardless of the orientations of the constituent molecules. The replacement of one hydrogen atom by a methyl group changes the symmetries of the $e_{1g}(i)$ and $e_{1g}(ii)$ orbitals to a_2 and b_1 and elevates the energy of b_1 slightly above that of a_2 . Consequently the spectrum of PhCH₃-TCNE consists of a broadened ($\Delta v_{1/2} = 6500$ cm⁻¹), red-shifted ($\lambda = 410$ nm) band which is a composite of two strongly overlapping bands (Figure 5) corresponding to the $a_2 \rightarrow$ TCNE and $b_1 \rightarrow$ TCNE transitions. This effect is also apparent in the spectra of the TCNE complexes of Ph₂CH₂, Ph₃CH, and Ph₄C (Figure 6, Table I) which

Figure 5. Deconvolution of toluene-TCNE spectra.

Figure 6. Absorbance curves of phenylmethane-TCNE complexes.

have $\Delta \nu_{1/2}$ values of 7300, 8000, and ~8500 cm and λ_{max} values of 405, 400, and 395 nm, respectively. The contrary trends in the $\Delta \nu_{1/2}$ and λ_{max} values indicate that two or more factors influence the observed spectral characteristics.

The electron-donating ability of methyl substituents is thought to arise from one or a combination of two effects: (1) hyperconjugation with a hydrogen atom attached to the benzylic carbon or (2) induction.

Hyperconjugation^{16,17} provides a mechanism for conjugating C-H and C-C σ bonds with the b₁ orbital of an adjacent phenyl ring and for releasing electrons into the ring. In the series PhCH₃, Ph₂CH₂, Ph₃CH, and Ph₄C, the benzylic hydrogens are replaced successively with phenyls. This simultaneously reduces the number of hydrogens available for hyperconjugation and diffuses the electrons released thereby over a larger number of phenyls. This should lead to a progressive decline in the energies of the b₁ orbitals and corresponding decreases in $\Delta \nu_{1/2}$ and λ_{max} values of TCNE complexes of members of the series.

The inductive electron-releasing ability of the benzylic carbon in a phenylmethane molecule arises from the circumstances that a ring carbon has sp² character and the benzylic carbon attached to it has sp³ character. Consequently the ring carbon is more electronegative and draws electrons from the benzylic carbon, increasing the electron density of the phenyl ring and elevating the energy of the b₁ orbital. If more than one phenyl is attached to the benzylic carbon, the electron available for release is spread over a larger number of phenyls. The electron density of the phenyl rings should diminish as the number of phenyls per molecule increases, and the energy levels of the b₁ orbitals and the $\Delta \nu_{1/2}$ and λ_{max} values of the corresponding TCNE complexes should decline as well.

While both hyperconjugation and induction are significant factors in establishing the energy levels of the π electrons in the phenylmethanes, they cannot be made to account for the increase in half-bandwidths with phenyl substitution observed in TCNE complexes of the phenylmethanes. Two additional factors which may be involved are (3) transannular π -electron interactions and (4) steric interactions that affect the populations of isomeric complexes.

Transannular π -electron interactions between phenyl groups attached to a common carbon atom were studied by Cram and Bauer.¹⁸ They observed that the maxima for the long wavelength bands, λ_2 , of TCNE complexes of a series of closed-chain [1,n] paracyclophanes (2) decrease progressively from 527 nm (n= 7) to 490 nm (n = 12) as the separation between the phenyl groups increases. Furthermore, the TCNE complex of the related

open-chain compound, 1,1-bis(4-*n*-propylphenyl)methane (3), has a λ_2 of 460 nm which is identical with that of *p*-xylene-TCNE.

These data suggest that transannular π -electron interactions decrease as the separation between phenyls increases and that it is negligible for open-chain compounds which have two phenyls joined to a common carbon atom. Since the λ_{max} values of the

phenylmethane-TCNE complexes decrease with increasing phenyl substitution, i.e., from 410 nm for PhCH₃-TCNE to 395 nm for Ph₄C, we conclude that transannular π -electron interaction is a negligible effect even in Ph₃CH and Ph₄C under the conditions of our study.

On the other hand, Distefano et al.¹⁹ found several unique maxima in the photoelectron spectra of Ph_2CH_2 and Ph_3CH which they attributed to intramolecular electronic interactions between

⁽¹⁷⁾ Mulliken, R. S.; Rieke, C. A.; Brown, W. G. J. Am. Chem. Soc. 1941, 63, 41-56.
(18) Cram, D. J.; Bauer, R. H. J. Am. Chem. Soc. 1959, 81, 5971-5977.

Figure 7. Resolution of bands for Ph₃CH-TCNE.

phenyl rings. We believe that these observations can be explained by inductive and hyperconjugative as well as geometric effects and that they are not contrary to our own observations.

Intermolecular steric interactions were studied by Holder and Thompson²⁰ who showed that I is less sterically hindered than II for the PhR-TCNE complexes (1). When R is a methyl group, the populations of I and II are nearly equal; the spectrum of PhCH₃-TCNE is a single band composed of two overlapping bands of nearly equal area (Figure 5). When R is a bulky group such as *tert*-butyl or phenyl, the population of I quite exceeds that of II and the spectrum is a composite of two unequal bands similar to that shown for the resolved spectrum of Ph₃CH-TCNE (Figure 7). The observed band has both a lower λ_{max} and absorbance and a greater half-bandwidth than it would have had if the populations of I and II had been equal.

Applying this argument to the phenylmethane-TCNE complexes, it follows that as the number of phenyls increases in the series PhCH₃, Ph₂CH₂, Ph₃CH, and Ph₄C, steric interference between TCNE and the phenyl rings increases. Consequently the population ratio, II/I, and the corresponding band-area ratio decrease, and the spectral bands of each of the complexes appear both blue-shifted and broadened with respect to the preceding member in the series. This corresponds to the trends in λ_{max} and $\Delta \nu_{1/2}$ which were determined for the TCNE complexes in this series.

Foster²¹ has reviewed several studies which show that the association constants for CT complexes of various derivatives of benzene, stilbene, and biphenyl are strongly affected by the number of potential donor sites per molecule and the degree to which they are screened by adjacent groups. In this connection it is interesting to note that the K values of TCNE complexes of PhCH₃, Ph₂CH₂, Ph₃CH, and Ph₄C are 0.56, 0.63, 1.84, and 0.85 L/mol, respectively (Table I). This trend may be rationalized by noting that as the number of donor sites (phenyl faces) per phenylmethane molecule increases, the steric screening of these sites by adjacent phenyls increases as well. Examination of space-filling molecular models of the phenylmethanes indicates that Ph₃CH has the largest number of unhindered phenyl faces; Ph₃CH–TCNE has the highest K value as well.

In summary, we can best account for the trends observed in the $\Delta \nu_{1/2}$, λ_{max} , and K values of the phenylmethane-TCNE complexes by assuming that the energy levels of the b₁ orbitals of the phenylmethane molecules are determined primarily by intramolecular C-H hyperconjugation and/or induction and that the populations of the two isomeric forms of the complexes are de-

 ⁽¹⁹⁾ Clain, D. J., Bauer, K. H. J. Am. Chem. Soc. 1959, 81, 59/1-59/1.
 (19) Distefano, G.; Pignataro, S.; Szepes, L.; Borossay, J. J. Organometal. Chem. 1976, 104, 173–178.

⁽²⁰⁾ Holder, D. D.; Thompson, C. C. J. Chem. Soc. Chem. Comm. 1972, 277-279.

⁽²¹⁾ Foster, R. "Organic Charge-Transfer Complexes"; Academic Press: London, 1969; p 195-201.

Figure 8. Absorbance curves for Ph₄M-TCNE complexes.

termined by steric interactions between TCNE and the phenyl rings.

Group 14 Tetraphenyls and TCNE. The TCNE complexes of Ph₄C, Ph₄Si, Ph₄Ge, Ph₄Sn, and Ph₄Pb have similar association constants (Table I) and identical λ_{max} values at 395 nm (Figure 8). Alt and Bock¹⁰ cite the low λ_{max} of PhSiH₃-TCNE at 385 nm relative to λ_{max} of PhCH₃-TCNE at 406 nm as evidence for $p\pi \rightarrow d\pi$ donation from the phenyl to vacant d orbitals of silicon. The equality in λ_{max} values for all Ph₄M-TCNE complexes is evidence for the absence of $p\pi \rightarrow d\pi$ interaction as well as effects due to electronegativity and atomic size of the central atoms in Ph₄M compounds.

TCNE Complexes of Phenylalkanes. The TCNE complexes of the monophenylalkanes $PhCH_3$, $PhCH_2Me$, $PhCHMe_2$, and $PhCMe_3$ (Table I) have spectral characteristics and association constants which are similar in all respects. This suggests that a benzylic hydrogen and a benzylic methyl group each exert about the same electron-releasing effect on the adjacent phenyl ring.

Arylamines and TCNE. Most monoarylamines react with TCNE by a complicated sequence of reactions, yielding N- or ring-substituted tricyanovinyl derivatives as the final products.¹¹ A primary arylamine such as aniline undergoes rapid N-substitution by TCNE (eq 3). A dialkylarylamine such as N,N-di-

$$C_6H_5NH_2 + C_2(CN)_4 \rightarrow C_6H_5NH[C_2(CN)_3] + HCN$$
 (3)

methylaniline yields a ring-substituted derivative with the tricyanovinyl group preferentially attached in the para position (eq 4). These reactions have hampered previous attempts to char-

$$(CH_3)_2NC_6H_5 + C_2(CN)_4 \rightarrow (CH_3)_2NC_6H_4[C_2(CN)_3] + HCN$$
(4)

acterize arylamine-TCNE complexes and to clarify the nature of their spectra.

Some di- and triarylamines, however, form stable equilibrium systems with TCNE which are free of interfering reaction intermediates and products; these systems can be characterized with greater precision. Arylamine-TCNE systems generally exhibit two absorbance bands (Table II) which have λ_{max} values in the range 385-405 nm for the low band, λ_1 , and 580-820 nm for the high band, λ_2 . A dichloromethane solution of Ph₃N and TCNE, for example, is green and has maxima at 385 and 815 nm. Continuous variations and Scott analyses using either band confirm the presence of Ph₃N-TCNE in stable equilibrium with its constituents. The similarity of the λ_{max} of the low-wavelength band with that of PhH-TCNE (385 nm) suggests that this band is due to a transition from an a₂-type orbital to TCNE. The high-wavelength band is attributed to a transition of a b₁-type orbital to TCNE.

Systems containing a monoarylamine and TCNE change color appreciably within several minutes or hours. A freshly prepared dichloromethane solution of $PhNH_2$ and TCNE is blue with

Figure 9. Absorbance curves of phenylamine-TCNE complexes.

Figure 10. Absorbance curves of *N*,*N*-dimethylaniline-TCNE derivatives.

maxima at 385 and 590 nm (Figure 9). The color of this solution deepens rapidly as the absorbance maximum of the 385-nm band simultaneously increases in intensity and shifts to 350 nm. Continuous variations and Scott analyses of the 590-nm band using freshly mixed solutions confirms the presence of PhNH₂-TCNE in the solution. A similar analysis of the 385-nm band fails because of the rapid changes taking place in the spectra in that region. Our observations indicate that the initial absorbance band at 385 nm is due to the complex PhNH₂-TCNE and that subsequent changes in this band are due to the buildup of products of an irreversible reaction between PhNH₂ and TCNE. This sequence is in general agreement with the mechanistic pathway proposed by Rappoport³ and Nogami et al.²² for the reaction of *N*-alkyl-amines and TCNE.

The preceding interpretation of the origin of the spectral bands is supported by studies of the effect of electron-releasing and -withdrawing substituents on the spectra of arylamine-TCNE complexes. We previously noted that a methyl substituent on a phenyl ring releases electrons into the ring and increases the energy of the b₁ orbitals. This effect is responsible for the difference in λ_{max} of PhH-TCNE (385 nm) and PhCH₃-TCNE (410 nm). This same trend is observed in comparing the λ_{max} of Ph₃N-TCNE (385 and 815 nm) with those of (4-CH₃C₆H₄)₃N-TCNE (425 and 820 nm). The effect is seen more dramatically in the λ_{max} shifts (Figure 10) in the TCNE complexes of 4-(dimethyl-

⁽²²⁾ Nogami, T.; Hasegawa, Y.; Shirota, Y.; Mikawa, H. Bull. Chem. Soc. Jpn. 1975, 48, 3048-3055.

Table III. Ionization Energies of Arylamines

	$I_{\rm D},~{\rm eV}^a$		<i>I</i> _p ,	eV
compound	λ_1	λ ₂	a ₂	b ₁
PhNH ₂ ^b	9.09	7.78	9.12	8.02
Ph ₂ NH ^e	9.09	7.25	9.25	7.44, 9.04
Ph_3N^b	9.04	7.11	8.80	6.99
PhNHMe ^c	9.09	7.59	9.05	7.65
PhNMe ₂ ^c	8.95	7.47	9.00	7.45
$4-CH_3C_6H_4NH_2^d$	8.91	7.38	8.86	7.27
$4-CH_3C_6H_4NMe_2^d$		7.59	8.94	7.62
Ph ₂ NMe ^e	8.95	7.14	9.25	7.33, 9.08
$(C_6H_4)_2NH^e$	9.09	7.74	8.08, 9.09	7.68

^a I_D calculated with eq 5, ref 31. ^b I_p from ref 28. ^c I_p from ref 29. ${}^{d}I_{p}$ from ref 30. ${}^{e}I_{p}$ from ref 27.

amino)benzonitrile (385 sh, 630 nm) and N,N-dimethylaniline (400 and 705 nm). Here the electron-withdrawing p-cyano substituent produces a blue shift in both bands with respect to N,N-dimethylaniline, whereas the *p*-methyl substituent produces a red shift. These comparisons show that ring substituents superimpose their own effects on the energies of the π electrons independently of the amino group.

The long wavelength bands, λ_2 , of the TCNE complexes of PhNH₂, Ph₂NH, and Ph₃N (Figure 9) have values of 600, 755, and 815 nm (Table II). The magnitude of these values and their large variation suggest that these bands arise from electronic transitions involving b₁-type orbitals which are conjugated with the nonbonded electron pair of the substituent nitrogen. Dewar and Dougherty²³ point out that conjugation between the nitrogen and phenyl groups in arylamines increases as the arrangement of bonds around the nitrogen atom approaches planarity. In the planar conformation the nonbonded electron pair (n) of nitrogen has p character, and the plane of the b₁ orbital is oriented at 90° to the axis of the n orbital.

Bond angles reported for the phenylamines (PhNH₂,²⁴ ∠HNH = $113 \pm 2^{\circ}$; Ph₂NH,²⁵ ∠CNC = 126° ; Ph₃N,²⁶ ∠CNC = $116 \pm$ 2°) indicate that the tendency toward planarity in these molecules, $PhNH_2 < Ph_2NH < Ph_3N$, parallels the increase in λ_2 values 600 nm < 755 nm < 815 nm, of the phenylamine-TCNE complexes. The trend in bond angles suggests increasing steric crowding of the phenyl groups; the trend in λ_2 values suggests a tendency toward greater $n \rightarrow \pi$ conjugation and higher b₁ energies in this series.

The assignment of λ_1 and λ_2 bands of monoarylamine-TCNE complexes to a₂ and b₁ transitions is supported by ionization energies (I_p) obtained from several photoelectron spectral studies²⁷⁻³⁰ (Table III). These I_p values agree closely with ionization energies (I_D) calculated for donor molecules in TCNE complexes using the Voigt-Reid³¹ equation

$$I_{\rm D} = \left(\frac{1204}{\lambda_{\rm max}} + 4.42\right) \middle/ 0.83 \tag{5}$$

The assignment of λ_2 bands of di- and triarylamine complexes is less straightforward due to the close spacing of the lower energy π orbitals.

N-Methylarylamines and TCNE. In his studies of arylamine-TCNE complexes, Isaacs⁴ showed that λ_{max} values for the long-wavelength band, λ_2 , of N-methylarylamine-TCNE complexes are higher than the λ_2 values for the corresponding unsubstituted arylamine-TCNE complexes. Our studies confirm

- (28) Debies, T. P.; Rabalais, J. W. Inorg. Chem. 1974, 13, 308-312. (29) Maier, J. P.; Turner, D. W. J. Chem. Soc., Faraday Trans. 2 1973, 69. 521-531
- (30) Kobayashi, T.; Nagakura, S. Bull. Chem. Soc. Jpn. 1974, 47, 2563-2572
- (31) Voigt, E. M.; Reid, C. J. Am. Chem. Soc. 1964, 86, 3930-3934.

Figure 11. Absorbance curves of carbazole-TCNE complexes.

Isaacs' findings and show that the values of λ_1 and association constants increase with N-methyl substitution as well. The effects on λ_1 , λ_2 , and K_2 are seen in the following series: Ph₂NH-TCNE $(385, 755, and 0.96) < Ph_2NMe-TCNE (400, 800, and 2.08),$ and PhNH₂-TCNE (385, 600, and 3.23) < PhNMe-TCNE (395, 640, and 4.84) < PhNMe₂-TCNE (400, 675, and 9.18). The data indicate that the electron-releasing ability of methyl groups is transmitted through nitrogen atoms to elevate the energy of conjugated phenyl b1 orbitals and increase the donor abilities of aromatic amines toward TCNE.

The λ_2 values observed for PhNMe and 4-CH₃C₆H₄NH₂ (Table II) are nearly identical at 640 nm. This suggests that a parasubstituted methyl and a N-substituted methyl each exert about the same electron-releasing effect on an aniline system.

Our assignments of λ_1 and λ_2 to the a_2 and b_1 orbitals of N-methylarylamine-TCNE complexes are supported by PES studies (Table III) which yield I_P values in good agreement with I_D values for PhNHMe, PhNMe₂, 4-CH₃C₆H₄NMe₂, and Ph₂NMe.

Carbazoles and TCNE. Carbazole (CBZ) (4) forms a stable 1:1 complex with TCNE,³² which is of interest because of its similarity to Ph₂NH-TCNE (Figure 11). Both CBZ and Ph₂NH

have phenyl groups mutually joined to the nitrogen; the phenyls in CBZ are cojoined at the ortho positions by a C-C bond which forces them into a coplanar conformation and provides a possible conduit for interring conjugation. The structural and orbital differences are reflected in the λ_1 and λ_2 values for Ph₂NH-TCNE (385 and 755 nm) and CBZ-TCNE (385 and 600 nm).

Structural studies of Ph_2NH^{25} and CBZ^{33} show that (1) the N-H bonds in neither compound are coplanar with the phenyl rings, (2) the C-N bond lengths in Ph₂NH (140 pm) and CBZ (139.4 pm) are shorter than the C-N single-bond length (147 pm), and (3) the C-C bond length between the cojoined phenyls in CBZ (147.9) is about midway between the C-C single-bond length (154 pm) and the intraring C-C bond length in benzene (139 pm). These data, together with evidence from UV spectra and nitration reactions of CBZ,³⁴ indicate that interring $\pi - \pi$ conjugation is of lesser significance than $n-\pi$ conjugation in CBZ.

Haink, Adams, and Huber²⁷ correlated the first three PES bands of CBZ with the orbitals π_7 , π_6 , and π_5 (Figure 12). The

⁽²³⁾ Dewar, M. J. S.; Dougherty, R. C. "The PMO Theory of Organic Chemistry"; Plenum Press: New York, 1975; pp 119-121 (24) Lister, D. G.; Tyler, J. K.; Høg, J. H.; Larsen, N. W. J. Mol. Struct.

^{1974, 23, 253-264.}

 ⁽²⁵⁾ Mornon, J.-P.; Bally, R.; Brassy, C. C. R. Hebd. Seances Acad. Sci.,
 Ser. C 1977, 284, 779-781.
 (26) Sasaki, Y.; Kimura, K.; Kubo, M. J. Chem. Phys. 1959, 31, 477-481.

²⁷⁾ Haink, H. J.; Adams, J. E.; Huber, J. R. Ber. Bunsenges. Phys. Chem. 1974, 78, 436-440.

⁽³²⁾ Cooper, A. R.; Crowne, C. W. P.; Farrell, P. G. Trans. Faraday Soc. 1965, 62, 18-28.

⁽³³⁾ Masayasu, K.; Fukuyo, M.; Shimada, A. Bull. Chem. Soc. Jpn. 1969, 42, 2174-2179.

Figure 12. Highest occupied orbitals of carbazole.

 $I_{\rm P}$ values of these bands, 7.68, 8.08, and 9.09 eV, correspond to λ values 616, 527, and 385 nm as calculated by eq 5. Since the calculated λ values, 616 and 527 nm, bracket λ_2 , 600 nm, for CBZ-TCNE, and since this band is quite broad ($\Delta \nu_{1/2} = 6250$ cm⁻¹), it is reasonable to assume that the λ_2 band is a composite of two overlapping bands with λ_{max} at about 650 and 550 nm, arising from π_7 and π_6 transitions, respectively. The λ_1 band at 385 nm can be assigned unequivocally to a π_5 transition.

This interpretation is supported by data obtained from the spectrum of PhCBZ-TCNE (5) (Figure 11) which exhibits a shoulder at 390 nm and two distinctly overlapping bands with λ_{max} at about 580 and 725 nm. Consideration of a space-filling model

of PhCBZ shows that steric crowding of the phenyls tends to force the three C-N bonds toward a coplanar conformation. The cojoined phenyls are then in nearly optimal alignment for $n \rightarrow \pi$ conjugation. The free phenyl, however, is prevented from becoming coplanar with the rest of the molecule because of steric interference between the four ortho hydrogens shown in 5. Nevertheless the interplanar angles of the free and cojoined phenyls is small enough to allow some conjugation between the free phenyl and the n electrons.

Since π_7 (Figure 12) has an anti node at the point of attachment of the free phenyl, this orbital will be somewhat perturbed, and its energy will be correspondingly increased. The orbitals π_5 and π_6 have nodes at the nitrogen atom and will be perturbed only slightly by interaction with the free phenyl. According to our estimates, the three highest energy orbitals, π_7 , π_6 , and π_5 , are shifted from 650 to 725 nm, from 550 to 580 nm, and from 385 to 390 nm in going from CBZ to PhCBZ. The expected pattern of wavelength shifts observed for these bands indicates that the assignments are probably correct.

We conclude that λ_1 in CBZ-TCNE and PhCBZ-TCNE arises from a π_5 transition and that high wavelength bands in these complexes are composite bands arising from π_6 and π_7 transitions.

Group 15 Triaryls and TCNE. Preer, Tsay, and Gray³⁵ reported that solutions of Ph₃P and TCNE in chloroform have absorbance bands with λ_{max} 374 and 502 nm. They assumed that these bands were due to the complex Ph₃P-TCNE. However, our continuous variations plots of solutions of these reagents in both chloroform and dichloromethane failed to confirm the presence of any complex between them. Reddy and Weis³⁶ reported that Ph₃P and TCNE reacted exothermically in acetonitrile to produce the colorless 1:2

Figure 13. Absorbance curves of Ph₃M-TCNE complexes.

adduct, octacyano-P,P,P-triphenylphosphacyclopentane (6).

Spectra of dichloromethane solutions of TCNE with Ph₃As, Ph₃Sb, and Ph₃Bi feature two strongly overlapping bands with λ_{max} values in the ranges 385-405 and 515-545 nm (Figure 13).

Continuous variations and Scott analyses of the spectra of these solutions indicate the presence of weak complexes of the type Ph_3M -TCNE (M = As, Sb, and Bi) in equilibrium with their components. The spectrum of a dichloromethane solution of Ph_3PO and TCNE, in contrast, showed a single poorly defined absorbance band at 300-400 nm and no absorbance at all above 400 nm.

Evidence that the spectral bands of the Ph₃M-TCNE complexes may arise from conjugated π orbitals is provided by the studies of Jaffe on the ultraviolet spectra of phenyl derivatives of group 15 elements.³⁷ He showed that extensive $n \rightarrow \pi$ conjugation occurs when atoms with nonbonded electron pairs such as S, N, P, As, Sb, and Bi are attached to phenyl groups and that $n \rightarrow$ π conjugation with N is stronger than conjugation with P, As, Sb, and Bi. Related compounds without unshared electron pairs, such as Ph₃PO, Ph₃AsO·H₂O, and Ph₃SbCl₂ exhibit the welldefined vibrational structure characteristic of unperturbed phenyl rings, while bands associated with conjugative interaction are absent. While these observations provide strong evidence for the involvement of conjugated nonbonded electrons in the formation of group 15-TCNE complexes, they do not explain some striking differences between Ph₃N-TCNE and Ph₃M-TCNE complexes (M = As, Sb, and Bi) nor do they explain the anomalous reactivity of Ph₃P with TCNE.

A close examination of the spectral characteristics of phenylamine-TCNE and Ph₃M-TCNE complexes (Table II) reveals that λ_1 and ϵ_1 values are fairly similar. However, λ_2 , ϵ_2 , and A_2/A_1 values for these two groups of compounds differ in three respects: (1) λ_2 values for phenylamine-TCNE's are larger (590-815 nm) than those for Ph₃M-TCNE's (515-545 nm); (2) ϵ_2 values for phenylamine-TCNE's are larger (660-2540) than those for Ph₃M-TCNE's (100-200); and (3) A_2/A_1 values for phenyl-

⁽³⁵⁾ Preer, J. R.; Tsay, F.-T.; Gray, H. B. J. Am. Chem. Soc. 1972, 94, 1875-1880.

⁽³⁶⁾ Reddy, G. S.; Weis, C. D. J. Org. Chem. 1963, 28, 1822-1824. (37) Jaffé, H. H. J. Chem. Phys. 1954, 22, 1430-1433.

⁽³⁸⁾ Blount, J. F.; Maryanoff, C. A.; Mislow, K. Tetrahedron Lett. 1975, 913-916.

Table IV. Ionization Energies of Triphenyl Derivatives of N, P, As, Sb, and Bi

	$I_{\rm D}, {\rm eV}^a$		I _P , eV		
compound	λ_1	λ_2	b ₁	a ₂	n
Ph ₃ N ^b	9.04	7.11	6.99	8.80	10.27
Ph ₃ P ^b			10.90	9.25	7.88
Ph ₃ As ^b	9.09	8.14	10.40	8.90	7.95
Ph_3Sb^b	9.00	8.09	10.09	9.14	8.18
Ph,Bi	8.91	7.99			

^a $I_{\rm D}$ calculated with eq 5, ref 31. ^b $I_{\rm P}$ from ref 28.

amine-TCNE's are greater than unity (1.02-1.40) while A_2/A_1 values for Ph₃M-TCNE's are less than unity (0.34-0.60). These comparisons indicate that there is a fundamental difference in the mode of interaction of TCNE with the HOMO's of the phenylamines and those of Ph₃As, Ph₃Sb, and Ph₃Bi.

On the basis of PES data and CNDO/2 calculations, Debies and Rabalais²⁸ concluded that the energies of the highest occupied orbitals in phenylamines decreased in the order $b_1 > a_2 > n$, whereas the energies of the highest occupied orbitals in Ph₃M compounds decreased in the order $n > a_2 > b_1$. They attributed this reversal of n and b_1 orbital energies primarily to shifts of electron density to the central atom by $p\pi \rightarrow d\pi$ interactions in the Ph₃M compounds, which result in an increase of the electron density on the central atoms in the order N < Sb < As < P.

The correlation of I_P values of Ph₃N, Ph₃As, and Ph₃Sb with I_D values of the corresponding TCNE complexes (Table IV) suggests that λ_1 bands in Ph₃N-TCNE and Ph₃M-TCNE complexes arise from an a_2 transition, whereas the λ_2 bands arise from delocalized b₁ orbitals in phenylamine-TCNE's and from localized n orbitals in Ph₃M-TCNE's. This difference in the nature of the HOMO of the phenylamines (b₁) and Ph₃M compounds (n) apparently gives rise to the differences in the λ_2 bands for the TCNE complexes of these two classes of compounds. The observed trends in electron density on the central atoms of these compounds are consistent with the reactivity of TCNE with Ph₃P and the tritolyphosphines relative to triaryl derivatives of N, As, Sb, and Bi if it is assumed that the reaction depends upon the interaction

of the highly electrophilic TCNE with a negatively charged central atom.

The structure of Ms₃P and its behavior toward TCNE are of interest in this connection. A structural study³⁸ of Ms₃P indicates a mean bond angle \angle CPC of 109.7° compared to 103° for Ph₃P. The extraordinary flattening of Ms₃P is attributed to strong steric repulsions between o-methyl groups on adjacent rings which incidentally almost completely shield the phosphorus atom. The very low rate of reaction of Ms₃P and TCNE is probably due to the inability of TCNE to interact effectively with the n electrons of the hindered phosphorus atom. Consequently, the formation of Ms₃P-TCNE must involve a charge-transfer interaction between TCNE and either or both of the a_2 and b_1 orbitals of the mesityl groups. The spectrum of Ms₃P-TCNE consists of a single band with λ_{max} 416 nm. The related complexes MsH-TCNE⁹ and Ms₃B-TCNE also have single bands with λ_{max} 461 and 475 nm, respectively. The lower λ_{max} value of Ms₃P-TCNE is expected because of electron withdrawal from the rings through $p\pi \rightarrow d\pi$ interactions.

In summary, the chemical behavior of TCNE with aryl derivatives of group 15 elements and the characteristics of their complexes indicate that (1) the lowest energy CT transitions between TCNE and arylamines involve the b_1 and a_2 orbitals on the aromatic ring which are energized by $n \rightarrow \pi$ conjugation, (2) the lowest energy CT transitions between TCNE and aryl derivatives of P, As, Sb, and Bi generally involve the n electrons on the central atom which are energized by $p\pi \rightarrow d\pi$ conjugation, and (3) the rate of irreversible reactions of TCNE with group 15 aryls is influenced by the magnitude of the negative charge on the central atom and its steric accessibility.

Acknowledgment. We are grateful for financial support from the Peter White Fund and the Ellen K. Russell Trust Fund of Northern Michigan University. We are indebted to Dr. Gerald D. Jacobs, Dr. David Kingston, Dr. Jerome A. Roth, and Dr. Philip I. Pavlik for valuable discussions, to Dr. R. I. Walter for the gift of a compound, and to Susan R. Lang for technical assistance.

Chemical Reactions on Clusters. 4. Gas-Phase Unimolecular Decomposition of the Acetone and Acetone- d_6 Ions in Association with Argon and Carbon Dioxide Clusters

A. J. Stace

Contribution from the School of Molecular Sciences, University of Sussex, Falmer, Brighton, Sussex, U.K. BNI 9QJ. Received July 3, 1984

Abstract: Ion clusters of the type $Ar_n (CD_3)_2 CO^+$, $Ar_n (CH_3)_2 CO^+$, and $(CO_2)_n (CH_3)_2 CO^+$ for *n* up to 35 have been formed by electron impact following the adiabatic expansion of an inert gas/acetone mixture. In each case the acetone ion is observed to undergo unimolecular decomposition to give either $X_n CD_3 CO^+$ or $X_n CH_3 CO^+$. Other product ions, such as CD_3^+ and CH_3^+ , which are present in the mass spectrum of the isolated ion, do not appear when acetone is clustered with either argon or carbon dioxide. Overall the product ion intensity on argon clusters is higher than that on carbon dioxide clusters. To account for these observations, a simple model is proposed in which it is assumed that unimolecular decomposition of the molecular ion and vibrational predissociation of the inert gas are in competition. Calculated results from the model suggest that the time scale for vibrational predissociation lies in the range $10^{-12}-10^{-10}$ s. Reaction products from unimolecular processes which proceed faster than 10^{-12} s are observed, whereas products from those reactions which are calculated to take place on a time scale >10^{-10} s are not. The experimental results indicate that the ions Ar_{11} ·CD₃CO⁺ and Ar_{11} ·CH₃CO⁺ are particularly stable, and it is suggested that this stability is due to the formation of a "magic" number atom configuration.

A number of recent experiments have exploited the fragile nature of van der Waals (vdW) molecules in order to gain some understanding of the interactions responsible for their formation and stability.¹ Thus, the energy of a single infrared photon is

(1) Levy, D. H. Adv. Chem. Phys. 1983, 47, 323.

often sufficient to bring about the "unimolecular decomposition" of a wide range of vdW molecules.²⁻⁷ The mechanism for this

⁽²⁾ Hoffbauer, M. A.; Gentry, W. R.; Giese, C. F. In "Laser-Induced Processes in Molecules"; Kompa, K. L., Smith, S. D., Eds.; Springer: Berlin, 1978.